OpenCV 使用 C/C++ 开发,同时也提供了 Python、Java、MATLAB 等其他语言的接口。如果你不了解 C/C++,请阅读《C语言教程》和《C++教程》。

OpenCV 是跨平台的,可以在 Windows、Linux、Mac OS、Android、iOS 等操作系统上运行。

OpenCV 的应用领域非常广泛,包括图像拼接、图像降噪、产品质检、人机交互、人脸识别、动作识别、动作跟踪、无人驾驶等。

IPPICV 加速

如果希望得到更多在英特尔架构上的自动优化,可以购买英特尔的集成性能基元(IPP)库,该库包含了许多算法领域的底层优化程序。在库安装完毕的情况下 OpenCV 在运行的时候会自动调用合适的 IPP 库。

从 OpenCV 3.0 开始,英特尔许可 OpenCV 研发团队和 OpenCV 社区拥有一个免费的 IPP 库的子库(称 IPPICV),该子库默认集成在 OpenCV 中并在运算时发挥效用。如果你使用的是英特尔的处理器,那么 OpenCV 会自动调用 IPPICV。

OpenCV的应用

自从测试版本在 1999 年 1 月发布以来,OpenCV 已经广泛用于许多应用、产品以及科研工作中。这些应用包括在卫星和网络地图上拼接图像,图像扫描校准,医学图像的降噪,目标分析,安保以及工业检测系统,自动驾驶和安全系统,制造感知系统,相机校正,军事应用,无人空中、地面、水下航行器。

它也被运用于声音和音乐的识别,在这些场景中,视觉识别方法被运用于声音的频谱图像。因为计算机的视觉只是一串串数字, OpenCV就是根据统计学,数学和计算机科学在这串数字上的分析建立起来的.

OpenCV 的组织关系

OpenCV 是由很多模块组成的,这些模块可以分成很多层:

  • 最底层是基于硬件加速层(HAL)的各种硬件优化。
  • 再上一层是 opencv_contrib 模块所包含的 OpenCV 由其他开发人员所贡献的代码,其包含大多数高层级的函数功能。这就是OpenCV的核心。
  • 接下来是语言绑定和示例应用程序。
  • 处于最上层的是 OpenCV 和操作系统的交互。
opencv structure

OpenCV的模块

下表给出了 OpenCV 包含的具体模块,虽然这些模块会随着时间推移而不断的发展,但模块始终是组成这个库的基本单位,每个函数都是一个模块的一部分。

模块 说明
Core 该模块包含 OpenCV 库的基础结构以及基本操作。
Improc 图像处理模块包含基本的图像转换,包括滤波以及类似的卷积操作。
Highgui 在 OpenCV 3.0中,分割为 imcodecs、videoio 以及 highgui 三部分。这个模块包含可以用来显示图像或者简单的输入的用户交互函数。这可以看作是一个非常轻量级的 Windows UI 工具包。
Video 该模块包含读取和写视频流的函数。
Calib3d 这个模块包括校准单个、双目以及多个相机的算法实现。
Feature2d 这个模块包含用于检测、描述以及匹配特征点的算法。
Objectect 这个模块包含检测特定目标,比如人脸或者行人的算法。也可以训练检测器并用来检测其他物体。
MI 机器学习模块本身是一个非常完备的模块,包含大量的机器学习算法实现并且这些算法都能和 OpenCV 的数据类型自然交互。
Flann Flann 的意思是“快速最邻近库”。这个库包含一些你也许不会直接使用的方法,但是其他模块中的函数会调用它在数据集中进行最邻近搜索。
GPU 在 OpenCV 中被分割为多个 cuda* 模块。GPU 模块主要是函数在 CUDA GPU 上的优化实现,此外,还有一些仅用于 GPU 的功 能。其中一些函数能够返回很好的结果,但是需要足够好的计算资源,如果硬件没有GPU,则不会有什么提升。
Photo 这是一个相当新的模块,包含计算摄影学的一些函数工具。
Stitching 本模块是一个精巧的图像拼接流程实现。这是库中的新功能,但是,就像 Photo 模块一样,这个领域未来预计有很大的增长。
Nonfree 在 OpenCV 3.0 中,被移到 opencv_contrib/xfeatures2d。OpenCV 包含一些受到专利保护的或者受到使用限制的(比如 SIFT 算法)算法。这些算法被隔离到它们自己的模块中,以表明你需要做一些特殊的工作,才可以在商业产品中使用它们。
Contrib 在 OpenCV 3.0 中,融合进了 opencv_contrib。这个模块包含一些新的、还没有被集成进 OpenCV 库的东西。
Legacy 在 OpenCV 3.0 中,被取消。
ocl 在OpenCV 3.0 中,被取消,取而代之的是 T-API。这是一个较新的模块,可以认为它和 GPU 模块相似,它实现了开放并行编程的 Khronos OpenCL 标准。虽然现在模块的特性比 GPU 模块少很多,但 ocl 模块的目标是提供可以运行在任何 GPU 或者是其他可以搭载 Khronos 的并行设备。这与 GPU 模 块形成了鲜明的对比,后者使用 Nividia CUDA 工具包进行开发,因此只能在 Nividia GPU 设备上工作。

OpenCV的下载和安装

OpenCV的下载和安装请参考OpenCV下载和安装(包含所有平台)

OpenCV的使用